

CIE Chemistry A-Level Practicals for Papers 3 and 5 Rate of Reaction

🕟 www.pmt.education

▶ Image: Contraction PMTEducation

Disappearing cross: Change in rate of the reaction of sodium thiosulphate with hydrochloric acid as temperature is changed: $Na_2S_2O_3 + 2HCI \rightarrow 2NaCI + SO_2 + S + H_2O$

Method		Accuracy	Explanation
1.	Add about 10 cm of 1 mol dm ⁻³ hydrochloric acid to the 'acid' tube. Place this tube into a plastic container (without the cross under it).	 Hold the glass tubes and vertically in the plastic container. 	
2.	Use a measuring cylinder to add 10.0 cm of 0.05 mol dm ⁻³ sodium thiosulfate solution to the second tube. Place this tube into the plastic container with the cross under it and carefully place a thermometer in this tube.		
3.	Record the start temperature and then add 1 cm of the acid to the thiosulfate solution and start timing.		
4.	Look down through the tube from above and record the time for the cross to disappear from view .		
5.	Record the final temperature of the reaction mixture, and then pour the cloudy contents of the tube into the sodium carbonate solution.	• The temperature at which each experiment is carried out must be known as accurately as possible. This is done by measuring the initial and the final temperature to find a mean temperature.	This acts as the 'stop bath'.
6.	Now add water from a very hot water tap (or kettle) to the plastic container. The water should be no hotter than 55 °C. Add cold water if necessary.		
7.	Measure another 10.0 cm of 0.05 mol dm ⁻³ sodium thiosulfate solution into a clean tube. Insert this tube into the correct hole in the plastic container (i.e. the one with the cross under it).		

www.pmt.education

▶ Image: PMTEducation

8.	Leave the tube to warm up for about 3 minutes.	
9.	Repeat steps (3) to (6) in order to obtain results for at least 5 different temperatures in total.	

Safety:

- To minimise the escape of **toxic** sulfur dioxide during the experiment a lid is advised. Two holes should be made in the lid using a hot wide cork borer. These holes should securely hold the glass tubes and vertically in the plastic container. Could also perform the experiment in a **fume cupboard**.
- Wear eye protection, a lab coat and gloves as HCl is an irritant.
- Ensure that the investigation is carried out in a **well-ventilated room** and that appropriate measures are taken to dispose of waste solutions.

Stop baths:

- Containers of sodium carbonate solution and phenolphthalein (stop baths) should be available to students so that the acid and sulfur dioxide can be neutralised at any point during the experiment.
- Once the colour of the solution in the stop bath changes, the sodium carbonate has been used up and the stop bath will need to be replenished.
- The stop bath should be placed in a fume cupboard, if available.

Analysing the data:

- In these experiments at different temperatures, the **concentrations** of all the reactants are the **same**.
- The time taken to produce the same amount of sulfur at different temperatures is an indication of rate of the reaction.
- A graph of the amount of sulfur produced against time can be plotted.
- The initial rate of reaction = (amount of sulfur)/time so the initial rate of reaction is proportional to 1/time.
- This is an approximation for rate of reaction as it does **not** include concentration. This can be used because it is assumed that the amount of sulphur produced is **fixed** and constant.

Initial rate method: 'lodine Clock' experiment

 Hydrogen peroxide reacts with iodide ions to form iodine and the thiosulfate ion immediately reacts with iodine:

 $H_2O_2(aq) + 2H^+(aq) + 2I(aq) \rightarrow I_2(aq) + 2H_2O(I)$

- $2S_2O_3^{2-}(aq) + I_2(aq) \rightarrow 2I^-(aq) + S_4O_6^{2-}(aq)$
- $S_2O_3^{2-}$ ions are used to **remove iodine** as it forms.

Initial rate method: 'lodine Clock' experiment ...

Method	Accuracy Explanation
 Fill the 50 cm³ burette with potassium iodide solution. 	Rinse a 50 cm ³ burette with potassium iodide before
 Transfer 10.0 cm³ of hydrogen peroxide solution from a burette to a 100 cm³ beaker 	Beaker should be clean and dry
 Use a 50 cm³ measuring cylinder to add 25 cm³ of sulfuric acid to a 250 cm³ beaker. 	Beaker should be clean and dry
 Use a 25 cm³ measuring cylinder to add 20 cm³ of distilled (deionised) water into the 250 cm³ beaker. 	
 Use a plastic dropping pipette to add about 1 cm³ of starch solution to this beaker. 	
 Use the burette to add 5.0 cm³ of potassium iodide solution to the mixture in the 250 cm³ beaker. 	
 Finally, add 5.0 cm³ of sodium thiosulfate solution from a burette to the mixture in the 250 cm³ beaker. 	
8. Stir the mixture in the 250 cm ³ beaker. Pour the hydrogen peroxide solution from the 100 cm ³ beaker into the 250 cm ³ beaker and immediately start the timer .	Stir the mixture
 Stop the timer when the mixture in the 250 cm³ beaker turns blue-black. Record the time. 	
 Rinse the 250 cm³ beaker with distilled (deionised) water and dry it with a paper towel. 	
11. Repeat steps in four further experiments changing the concentration of potassium iodide.	This will allow the order of reaction to be determined.
12. Plot a graph of initial rate (y) versus concentration (x) to determine the order.	

 \bigcirc

Improvements:

• Use a colorimeter to minimise human error in timing.

Continuous monitoring method:

Method		Accuracy	Explanatio n
1.	Add 50 cm ³ of 0.8 mol dm ⁻³ hydrochloric acid to a conical flask.		
2.	Set up the gas syringe or alternative gas collection equipment.		
3.	Add a 6 cm strip of magnesium ribbon to the conical flask, place the bung firmly into the top of the flask and start the timer .	Swirl the flask every few seconds.	
4.	Record the volume of hydrogen gas collected every 15 seconds for 2.5 minutes.		
5.	Alter the concentration of HCI and repeat steps (1) to (4).		

Experiment considerations:

- A typical gas syringe only measures 100 cm³ of gas so you don't want a reaction to produce more than this volume. **Quantities of reactants** need to be calculated carefully.
- Measuring initial rate is preferential as the concentrations are known at the start of the reaction.
- In reactions where there are several reactants, if the concentration of **one of the reactant** is kept in a large **excess** then that reactant will appear not to affect rate and will be essentially zero order. This is because its concentration stays virtually constant and does not affect rate.

Analysis:

- Plot a graph of volume of hydrogen produced on the y-axis against time in seconds for each hydrochloric acid concentration. Draw a line of best fit.
- Draw a tangent to each line of best fit at time, t = 0 s.
- Calculate the gradient of each tangent in order to deduce the initial rate of each reaction at each concentration.
- Compare the rate values obtained.

Other ways of following the reaction:

• Colorimeter: If any of the reagents or products are coloured (normally iodine), the reaction can be followed by **measuring time vs absorbance**. The absorbance is proportional to the concentration of iodine (a calibration graph is required to calculate the exact concentration of iodine).

www.pmt.education

- **Quenching**: Aliquots of a reaction mixture can be sampled at different times (without disturbing the reaction). The aliquots are quenched to stop the reaction by either: cooling, diluting, or neutralising an acid/base catalyst. The aliquots can then be titrated against to workout concentrations of reagent present.
- Measuring mass lost
- Measuring pH

0

▶ Image: PMTEducation